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Topological and geometrical properties of crack patterns produced by the thermal shock
in ceramics
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We study the crack patterns produced by thermal shock in ceramic tableware. Cracks produced at suffi-
ciently high-temperature gradients partition the surface plane of a ceramic material into cells forming a random
two-dimensional space-filling cellular structure. The topological and geometrical properties of these structures
are described and analyzed. The distribution of the number of cell sides, the topological correlations between
adjoining cells, the probability distributions of a cell area and side length, the average area and perimeter of
n-sided cells, and the distribution of vertex angles are determined. The results show that the studied cellular
structures obey the Aboav-Weaire laietallography3, 383(1970; 7, 157 (1974] and Desch’s lawJ. Inst.
Metals22, 241(1919]. The scaling behavior of cellular structures obtained at different temperature gradients
of the thermal shock is also presentg81063-651X98)00803-4

PACS numbg(s): 62.20.Mk, 05.90+m, 44.90+c, 46.30.Nz

I. INTRODUCTION references therejnin fact, random cellular structures can be
observed in many natural phenomena and it was emphasized
The susceptibility of ceramic materials to failure due toby various authors that these structures abound in nétese
thermal stresses is one of the factors limiting their applicathe review papers of Weaire and Rivigr] and Stavan$2]
tions. The thermal stresses result from temperature gradienter many examplées In recent years the topological and geo-
within a body and the fact that free expansion or contractiorinetrical properties of such structures have been studied in-
of each volume element of a body cannot occur. The effectensively, both experimentally and theoretically, and the
of thermal stresses on ceramic materials depends on tHBethods to classify them have been proposed. The semi-
stress level, the stress distribution, and the material chara@MPirical laws generally obeyed in different random cellular
teristics such as homogeneity, porosity, and existing Crackétructgres have b_een formulated. Att_er_npts have been made
When ceramic materials are subject to a rapid change in 0 derlye_ these W|del_y observed empirical Iaw; by mgth_ods
temperaturdgthermal shock substantial thermal stresses de- of stat|§t|cal mec_hamcE?,]. Recent re_sults pbtamed within
. : ean-field theories, Potts model simulations, and Monte
velop which may cause the formation of cracks and eventu

fracture of a material. The critical temperature differen arlo studieg1,2] have also contributed to the basic under-
acture of a material. The critical temperature ere Cestanding of cellular structures.

AT_C f_or the initiation of severe damage is usc_ed_a_s the de- 1he aim of this paper is to present topological and geo-
scriptive parameter for the thermal shock resistivity of Ce-merical properties of random cellular structures formed by
ramics; AT is usually determined by the significant drop in ¢racks produced by the thermal shock in commercial ceramic
material strength and it is also indicated by the appearance gfaterials used to make common dinner plates; the unglazed
cracks. In the thermal shock the main source of stress interpiates were supplied by Sociedade Porcelana Alcothaia.
sification comes from the temperature gradient along the hegSPAL), Portugal. Our interest in this subject comes from the
flow axis. Moreover, thermal stresses are largest at the sufact that understanding and control of crack propagation dur-
face. The most probable cracks that form, therefore, duringng the thermal shock in ceramic products is technologically
the thermal shock are thus surface cracks normal to the suimportant. We describe regularities that we found in the or-
face. These cracks do not form a barrier for the heat flow. Iriganization of cracks induced by the thermal shock and we
the direction perpendicular to the surface they can be welkompare patterns formed by these cracks with patterns ob-
characterized by their penetration depths. More interesting iserved in other random cellular structures of many natural
the crack pattern on the surface. This pattern consists gdhenomena. We also consider the effect of the temperature
loops that partition the surface plane into cells and also ofjradient on topological and geometrical properties of created
dangling branches in larger cells. The random space-fillingrack patterns.
cellular patterns associated with stress-relief cracking are
common in nature, e.g., cooling-induced patterns in lava
flows and shrinkage crack patterns in miseée Ref[1] and Il EXPERIMENTAL PROCEDURE
The disk-shaped samples having a diameter of 15 mm and
thickness of 4.5 mm were core drilled from the central part
*Permanent address: Faculty of Physics, Technical Universitypf unglazed plates. One of the most widely used thermal

Malczewskiego 29, 26-600 Radom, Poland. shock tests of ceramic materials is the classical water quench
TAuthor to whom correspondence should be addressed. Electrontest. We performed the water quench test using a specially
address: skm@fis.ua.pt designed apparatii4] that guaranteed a repeatable and mea-
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surable thermal gradient. In our experiments the test sample lll. TOPOLOGICAL PROPERTIES
was allowed to equilibrate in a vertical electrical furnace for
20 min and dropped in a time shorter tha s into a water In this section we discuss the general topological features

bath having the temperature 20 °C. During the water quenchf the crack loops. Special attention is paid to the topological
the increase of the bath temperature never exceeded 1 °C. Qrelation between neighboring cells.
a dry run it was confirmed that the temperature of the
sample, as measured at the surface, at the moment of hitting
the cold water was not lower than few degrees from that in In two-dimensional cellular structures the topology of a
the furnace. Since the whole procedure is automatic, thiell can be described by only one parameter, i.e., the number
small drop is always repeatable. Subsequently, the sample of sides of a cell. The number in random cellular struc-
were taken out of the bath, dried, and covered with 1% wateture is a topological random variable and can be character-
solution of methylene blue powder supplied by MERCK.ized by the discrete probability distribution functidh(n)
The painted samples were left for drying and the excess inRnd its moments. Both the(n) and its moments are the
was removed by water. This procedure rendered cracks vignost frequently measured experimental data and they at-
ible. The critical temperature differend€T ; was determined tracted the greatest attention in the theoretical studies of ran-
as the quenching temperature difference in which a prodom cellular structures. In Fig. 3 we present distributions
nounced drop in the retained bending strer(gikasured ina P(n) determined in our cellular structures. The typical error
standard three-point-bending testas observed4]. We ob-  bars are also shown in this figure. One can notice that within
tainedA T~ 200 °C, corresponding to the initial temperature experimental accuracy it is difficult to distinguish probability
220 °C in the water quench test. We noticed that for thedistributionsP(n) obtained in cellular structures correspond-
temperature gradielAT<AT., the crack pattern did not ing to different temperature gradients of the thermal shock.
appear. Using the image scanner, we digitized images of vigone characteristic feature of our cellular structures that fol-
ible crack patterns at 708703 pixel resolution and eight bits lows from Fig. 3 is that the probability of finding cells with
of gray scale. The standard image processing operatiorféve or six sides is very large, the value for six being higher.
were used to enhance the contrast of crack patterns. A binady significant occurrence of pentagons along with the most
image was then derived from the gray scale image using @xpected hexagons was also observed in crack patterns
thresholding routine. Finally, the thinning binary morpho- formed in cooling basalt flows and other contracting systems
logical operation that thins objects to lines and preserves thesee Ref[5] and references thereinThe probability distri-
Euler number was applied to the binary image. The skeletohutions shown in Fig. 3 have maxima ferbetween 5 and 6,
thus obtained contains both the topological and the metrithey are asymmetric, and the relati®{5)>P(7) is satis-
information of the crack structure and is suitable for meafied. These properties d?(n) have been observed also in
surement operations. In order to verify the correspondencether random cellular structures. The probability distribution
between a crack pattern and its skeleton we always superingan be characterized by its moments. In the experimental and
posed the skeleton on the original gray scale image. Thretheoretical studies of random cellular structures usually only
examples of the obtained crack patterns with their superimthe first momentn), which determines the position of the
posed skeletons are shown in Figs. 1 and 2. One can see hagnter of gravity of the distribution, and the second moment
the crack pattern changes when the temperature gradient jm,, which determines the dispersion fvalues around the
the water quench test increases. The skeleton of the cragkean, are considered. Higher moment$¢fi) are sensitive
pattern after removal of all dangling branches forms a ranto the large values of, which is hard to measure because
dom two-dimensional cellular structure in which cells arethere are only a few large cells. They are useful only as
separated by very thin boundaries and they completely filjualitative indicators, e.g., the third moment measures the
the space. An example of such a structure is shown in Fig. Jasymmetry of the distribution. Analyzing random cellular
Though the structure of dangling bonds and the depth distristructures representing crack patterns, we observed that the
bution of cracks also carry useful information about thevertices are predominantly trivalent. There were only a few
physics behind the phenomenon, we limit ourselves in thigetravalent verticesabout 1%. This small percentage may
paper to the study of closed loop surface cracks. be due to the resolution of images of crack patterns. The
In the crack patterns produced at temperature gradientsumber of cells, edges, and vertices of any cellular structure
larger than but close tAT, one could distinguish only a few obeys the conservation law, i.e., Euler's relatidj. The
cells; therefore, our analysis was performed only for crackconsequence of Euler's relation for the infinite two-
patterns produced at higher temperature gradients where tlidgmensional cellular structures with only trivalent vertices is
proportion of inner cells to all cells was higher than 0.5. Wethat the average number of sides of a cell in such a structure
choose the following initial temperatures of the water quenchs 6, i.e.,(n)=6. In finite cellular structuregn) and the
test: 300 °C, 350 °C, 400 °C, 600 °C, and 700 °C. All thedeviation from 6 increases when the number of cells de-
guenches were done approximately for the same time, i.ecreases. This effect was observed, e.g., in two-dimensional
under 1 s. The proportion of the number of inner cells to thesoap froth[6] and Voronoi diagram$7]. We obtained the
number of cells at the boundary of a sample varied approxifollowing values for(n) averaged over crack patterns pro-
mately from 1.4(300 °Q to 5 (700 °Q. The number of duced at the same initial temperature of the water quench
samples taken into account was the following:(2@0 °Q, 7  test: 5.93 (for 700 °C, 600 °C, and 400 9C 5.86 (for
(350 °C and 400 °§ and 2(600 °C and 700 °C The results 350 °Q, and 5.79(for 300 °Q. The varianceu, of P(n)
presented below were obtained by averaging the data ovahows a great diversity of values in different natural random
the samples. cellular structures. It is of the order of unity for biological

A. Distribution of topological parameters
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FIG. 1. Crack pattern produced by the thermal shock in ceramic material and its skeleton. The initial temperature in the water quench test
was 400 °C.(a) The original gray scale imagéh) the skeleton(c) the skeleton superimposed on the original, &iidthe skeleton after
removal of dangling branches.

cells[8] and lies between 1 and 3 for soaps frote®]. The  served empirically that in cellular structures with trivalent
second moments of probability distributions shown in Fig. 3verticesm(n) is linearly related to H. The Aboav-Weaire
are the following: 2.67 (700 °Q, 2.70 (600°0, 2.82 law is usually expressed by the equation

(400 °Q), 2.81(350 °0Q, and 2.74(300 °Q, i.e., they are in

the rangeu,=2.75+0.07. nm(n)=(6—a)n+(6a+uy), (1)

wherea is a parameter ang, is the variance oP(n). In
many natural random cellular structures the paraneetsiof
The semiempirical Aboav-Weaire laj2,10,1] is the the order of 1[6,8] and does not exceed [22]. In finite
most frequently obeyed empirical regularity observed in rancellular structures one should replace 6 in Ef). by (n)
dom cellular patterns. It describes topological correlation bef12]. Peshkinet al.[13] showed that the linearity implied by
tween neighboring cells. Leh(n) be the average number of the Aboav-Weaire relation can be explained by the
sides of cells surrounding am-sided cell. AboaV{10] ob-  maximum-entropy principle with constraints imposed on

B. The Aboav-Weaire law
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(b)

FIG. 2. Gray scale images of crack patterns produced by théi

departure for cells with more than nine sides, which may be
due to the fact that the number of data points for many-sided
cells is low.

C. Two-cell topological correlations

In this section we describe topological correlations be-
tween shapes of nearest-neighbor cells more precisely than it
is expressed by the Aboav-Weaire law. The probability
P.(k) of finding k-sided cell in the neighborhood of an
n-sided cell equal$/ ,(k)/= M, (k), whereM (k) has been
defined above. The topological correlation functi@(s, k)
studied in this section are defined @¢n,k) =P,(k)/P(k).
They express the proportion of the probability of finding
k-sided cells in the neighborhood of-sided cells to the
probability of findingk-sided cells anywhere in random cel-
lular structure. The correlation functionS(n,k) defined
above differ from the correlation functions studied, e.g., in
Refs.[7,12,14 by the factor 1, because the sum of quan-
tities M, (k) over k is n [13]. The correlation functions
C(n,k) have been less investigated in cellular structures than
the probability distributiorP(n) or the Aboav-Weaire rela-
tion. These functions have drawn the attention in recent
years because they allow a comparison of topological prop-
erties of cellular structures with different distributioR¢n).
Comparing the topological correlations in different random
cellular structures, one observes their restricted variability in
structures that have similar values of the variapge More-
over, these correlations undergo a regular and smooth change
when u, increases. The correlatiof¥n,k) in random cel-
lular structures are found not to depend on the scale and
physical phenomena in which they occur. The observed de-
pendence of correlationS(n,k) on k is usually tested with
the linear dependendé4]

C(n,k)=1+ 1_(a/“rf)(n_6)(k—6), i)

wherea is the parameter of the Aboav-Weaire law aioglis

the variance oP(n). One should notice that the correlations
C(n,k) are in fact determined by a single structural param-
etera/ u,. Figure 5 shows the dependence of the correlations
C(n,k) on k, which we obtained for random cellular struc-
tures formed by cracks produced by the thermal shock at
ifferent temperature gradients. These data were obtained by

thermal shock in ceramic material with superimposed skeletons of@King into account only the inner-sided cells. The conclu-

cracks. The initial temperature in the water quench test (@as
300 °C and(b) 700 °C.

possible distribution®(n) andM,(k), whereM (k) is the
average number dé-sided cells adjoining an-sided cell. In

sion that follows from our data is that the number of sides of
adjoining cells are correlated: many sided cells have few-
sided neighbors and vice versa. The probability of selecting
six-sided cells in the neighborhood of a cell with any number
of sides is the same, i.e., six-sided cells are homogeneously
distributed among other cells in our cellular structures. This

Fig. 4 we show experimentally measured dependences Qfiso agrees qualitatively with the peak Bfn) in Fig. 3,
nm(n) onn obtained for cellular structures corresponding toynhich is close to 6. If the numbar of cell sides increases
crack patterns produced by the thermal shock at differenfrom 4 to 8, the probability of selecting a cell with any num-
temperature gradients. The data for this figure were obtainefler of sides in its neighborhood tends to the probability of
by calculatingm(n) only for the innem-sided cells. We also  selecting this cell randomly in the structure. In Fig. 5 we

plotted, for comparison, the straight line given by Eij)

have also plotted the straight lines according to &g with

with a=1 and u,=2.75. The experimental data follow, in a=1 andu,=2.75. One can notice a reasonable agreement
general, the Aboav-Weaire law very well. There is a slightbetween our experimental data and relati@h The devia-
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FIG. 3. DistributionP(n) of the numben of sides of cells in random cellular structures formed by cracks produced by the thermal shock
in ceramic material. The initial temperatures in the water quench test are indicated. The error bars denote a standard deviation and they are
given for the initial temperature 400 °C.
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tions from this relation for the smallest and the largkst IV. METRIC PROPERTIES

values can be due to the too small number of cells with the .
. - There are several metric parameters of a cell whose prob-
extreme number of sides. The deviations are also larger for

i : . ability distributions can be used to characterize cellular struc-
correlations in cellular structures corresponding to the . : . :
; tures, e.g., the area, perimeter, side length, radius of gyration,
smaller temperature gradients of the thermal shock because " . : . )
the number of cells becomes lower. The topological correla—e.quwalent diameter of a cell, or segments into which straight
fi c(n K £ fulfill th giti ’ C(NK=0 f Il k lines whose directions are random are broken by their inter-
lons C(n,k) mus Uil the condition (n.k)=0 for a< sections with cell sides. Among these parameters the prob-
andn. Formula(2) gives unphysicallyC(4k) <0 for k<4, gty distributions of cell areas and side lengths are the
so it cannot be used to describe topological correlations b&ost often reported1,2,9,15-19 in cellular systems. In
tween the smallest cells. In our structures we obtaineeneral, one expects that all lengths should behave in a simi-
C(3,3)=0; the same has been observed in cellular structuregr way and the area should go as their sqUafs. The
[12,14. Indeed, this relation follows from the general topo- probability density functions of cell areas normalized by
logical constraint that a cell does not share two edges withhe median cell aredqq in cellular structures formed by

any one of its neighbors. cracks produced by the thermal shock at different tempera-
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FIG. 4. Aboav-Weaire law: the average correlatiom(n) as a function ofn. m(n) is the average number of sides of the nearest-
neighbor cells adjacent to-sided cells. The straight line is calculated from EQ.with a=1 andu,=2.75. The initial temperatures in the
water quench test are indicated.
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FIG. 5. Topological two-cell correlatiorS(n,k) defined as the proportion of the probability of findikgided cells in the neighborhood
of n-sided cells to the probability of findinkr-sided cells anywhere in the cellular structure. The straight lines are calculated from formula
(2) with a=1 andu,=2.75. The initial temperatures in the water quench test are indicated.

ture gradients are shown in Fig. 6. In Fig. 7 we present thent temperature gradients of the thermal shock within experi-
probability density functions of side lengthk (along mental error are the same. We conclude that there exist scale
crackg, normalized by the median side lendth.q0btained invariant probability density functions that describe distribu-
in the same cellular structures as in Fig. 6. One can noticiions of areas and side lengths in all our random cellular
that the probability density functions corresponding to differ-structures. Other similarities between cellular structures pro-
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FIG. 6. Probability density function of normalized cell areas in random cellular structures formed by cracks produced by the thermal
shock in ceramic material. The curve results from a fit of the probability density function given {@)Eq.experimental data. The initial
temperatures in the water quench test are indicated.

duced by the thermal shock at different temperature gradiin Voronoi networks 18,19 and the lognormal distribution
ents arise from relations between average quantities. We olbecause it results from multiplicative random events. We
tained for all temperature gradients the following ratios ofhave tried to fit different probability density functions to our
average quantitiegP)/(L)=5.80+0.10 (P denotes the pe- experimental data. The goodness of fit was characterized by
rimeter of a cel, (AY(L)?’=1.91+0.14, and x?test. The smallest test statistigd was obtained for the
(AY/{Lg)?>=2.48+0.05 (L is the Euclidean side length of a probability density function

cell). In a regular hexagonal structurP)/{L)=6 and

(AY/{Lg)?>~2.56. The experimental values obtained here in- ax® L (X¥— )2
dicate strong correlations between the area, perimeter, and f(x)= exp —————| ©)
side lengths in our cellular structures. There are no exact oN2m 20

results for the form of probability density functions for the

area and side length in random cellular structures and severahere o, u, and o are parameters. This function has been
functions have been proposed. In Rdf5] one can find four used often to describe the distribution of grain sizes in poly-
different probability density functions proposed to fit the ex-crystals(see Ref[20] and references therginlt was dem-
perimental data. The most often used function wadistri-  onstrated20] that the distribution of grain sizes in polycrys-
bution because it gives a good fit to the distribution of areasalline ceramics is the most accurately represented by the
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FIG. 7. Probability density function of normalized cell side lengths in random cellular structures formed by cracks produced by the
thermal shock in ceramic material. The curve results from a fit of the probability density function given (8) Egexperimental data. The
initial temperatures in the water quench test are indicated.
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FIG. 8. Radius law: the normalized average radiusiefided cells as a function of the normalized number of cell sides. The initial
temperatures in the water quench test are indicated.

function(3) and it does not depend on the average grain sizeboundaries between cells so the average energy, proportional
We obtained the following parametera,=0.25, ua=1, to the perimeter of a cell, is the different physical constraint
and 0,=0.17 for the distribution ofA/A .4 and ¢, =0.5, in these systems. Entropy maximization under the inescap-
uL=1, ando =0.25 for the distribution ofL/L yeq. The a_ble mathemgtical constraints and this physical constraint
results of the fit are shown in Figs. 6 and 7. The relationyields the radius law. _ _ '
between parameters =2« indicates that the area behaves L&t Iy denote the normalized average radiusnesided
approximately as a square of the side length, as expecteells defined as,=(VA,)/(JA), whereA, is the area of
There is thus a correlation between the distribution laws fof-Sided cell§9]. In Fig. 8 we showr, as a function oh in
areas and side lengths in our cellular structures. The similgpur random cellular structures formed by cracks produced by
correlation was also observed in Voronoi mosaics where thi1® thermal shock at different temperature gradients. In this

shifted y law was used to fit the area and side length distri-19ure only the inner cells in a structure were taken into ac-
butions[15] count. One can notice that the dependence obn n is

linear for all temperature gradients, indicating that our ran-
dom cellular structures obey Desch’s universal law. The ran-
V. THE RADIUS LAW dom cellular structures formed by cracks thus belong to the
class of random space-filling structures in which the energy
In this section we consider relations between topologicahssociated with cell boundariésracks is probably the im-
and metric parameters in our random cellular structures. Thportant mechanism in the development of the structure.
correlation between the shape and size of cells in random In the natural cellular structures fewer experimental re-
cellular structures attracted the attention of scientists a longults have been presented for correlations between other met-
time ago[21,27. The two relations were discovered empiri- ric parameters such as the average perimeter or side length of
cally: Lewis’s law and Desch’s law, also known as the radiush-sided cells and the topological parameterThese corre-
law. Lewis’s law relates the average areareéided cells lations were experimentally studied in vegetable tisqidgs
linearly ton, whereas Desch’s law relates the average radiugnd the linear relationship between the average perimeter of
(defined as the square root of an areén-sided cells lin- N-sided cells andh was obtained. In our investigations the
early ton. These two laws are obeyed by a wide variety ofPerimeters of the.cells are very important because _they rep-
random space-filling model structures and experimental syd€Sent cracks. Figure 9 shows the average perimeter of
tems (see the paper of Glazieet al. [9] and references n-sided cells as a function of for all our cellular structures.

therein. The Lewis’s and Desch’s laws can thus be used toThe data corresponding to different temperature gradients of

classify random two-dimensional cellular structures. Rivierthe thermal shock overlap after normalization shown in the

[3] used the maximum-entropy principle to prove these Iawé'gh”e' Thg dl'ependfencigf t_lr_f a&’er?‘%? pefrlmeiﬁr—glf.jed
theoretically. Rivier's maximum-entropy method was basecf€''S 0NN IS lin€ar forn= 9. The deviation from this finear

on the observation that random cellular structures are usualgependence for large cells indicates that these cells are more
indistinguishable apart from the scale of measurement. It i Iongate_d than smalle.r cells. This may be_due to the presence
thus improbable that specific forces are responsible for th8.‘c dangling branches in large cells that failed to connect cell

universal properties of random cellular structures. AnSIdes.
“ideal” random space-filling structure can thus be deter-
mined by mathematical constraints only and the fact that the
structure is the most probable one. This structure obeys The variation of the angle between cell sides at vertices
Lewis’s law. In many systems all the energy is carried byhas been little studied in random cellular structures. This is

VI. DISTRIBUTION OF VERTEX ANGLES
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FIG. 9. Normalized average perimeterrosided cells as a function of the normalized number of cell sides. The initial temperatures in
the water quench test are indicated.

due to the observation that in many natural trivalent cellularobtainsd(n) =120°, which corresponds to the lack of devia-
space-filling structures the angle between cell sides at verttion from 120° for the average internal anglemeéided cells.

ces is tightly distributed around 1202]. This property also For f=1 the formula gives the average internal angle in
follows from equilibrium conditions at verticd]. Stavans  regular polygongthis behavior is shown as a dotted line in
and Glazief 6] measured internal angles of cells at verticesrig. 11).

as a function of the number of sides in a two-dimensional |n our cellular structures cell edges Corresponding to
soap froth. They observed significant deviations from thecracks are slightly irregulafsee Figs. 1 and)2In order to
angle 120° that were independent of the length scale. Thmeasure the angle between cell edges at a given vertex, we
experimental relation between the average internal angle qeplaced each edge near the vertex by a straight segment
n-sided cellsg(n) andn can be well expressed by the func- determined by the least-squares fit to pixels forming the edge
tion [23] and closest to that vertex. The fraction of poifitsof each
edge taken into account in the least-squares fit was an adjust-
able parameter in this procedure. The results obtained for
f,=0.25 in our samples are shown in Fig. 10. The depen-
dence ofd(n) on n in this figure is well expressed by the
wheref is a single fitting parameter between 0 andelg., function(4) with f =0.15. We observed that by decreasfng
f=0.3 for the relation measured in R¢6]). For f=0 one the deviations o®(n) from 120° decrease, as it is shown in

6(n)=120° 1+0.5f(1—§”, (4)

135
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6(n)

115 +

110

105

100

FIG. 10. Average internal ang(n) of n-sided cells as a function of their number of sigesThe angle between cell edges at a vertex
was determined by replacing a fractibn=0.25 of each cell edge near the vertex by a straight segment fitted by the least-squares procedure.
The initial temperatures in the water quench test are indicated. The error bars denote a standard deviation and are given for the initial
temperature 400 °C. The curves were calculated from(&q.
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FIG. 11. Average internal anglg(n) of n-sided cells as a function of their number of siged random cellular structures formed by
cracks produced by the thermal shock in ceramic material. The initial temperature in the water quench test was 400 °C. The angle between
cell edges at a vertex was determined by replacing a fradtioof each cell edge near the vertex by a straight segment fitted by the
least-squares procedure. The thin curves connect the results obtained for each ¥alaadfre placed to guide the eye. The thick and
dashed curves are calculated from E4). The thick curves fit measured relations. The paramiefer each of these curves is given after
the corresponding parametgr.

Fig. 11. This property of our crack patterns does not dependreas, perimeters, and side lengths also indicate correlations
on the temperature gradient of the thermal shock. The medetween these quantities.
sured relation betwee#é(n) andn for any value of the pa- (v) The radius lawm(Desch’s law holds, suggesting that
rameterf, can be fitted well by the functiofd). We could  the cell energy may be important in the physical model of
not decreasd, below 0.15 because of the resolution of our crack development. The average perimetenefided cells
Images. increases linearly witim for n<8.
(vi) We measured angles between cell sides at a vertex
VIl. CONCLUSIONS approximating cell sides close to the vertex by straight seg-
ments obtained by the least-squares fit. The obtained depen-
In this paper we have presented experimental data and ajence of the average internal angle rosided cell onn
analysis of crack patterns produced by the thermal shock &hows slight deviations from 120°; however, the deviation
temperature gradientAT>AT., where AT;~220°C, in_ gecreases when cell sides are replaced by straight segments
ceramics used commercially in making tableware. Thegjoser and closer to a vertex. This suggests that in the limit
cracks visible on the surface of a sample partition the surfacg,g average internal angle ofsided cells is 120° for all
plane into cells forming a random two-dimensional spacesy5jues ofn.
filling cellular structure. We have described topological and analysis of crack patterns produced at different tem-
geometrical .properties of this structure. The results Obtai”eﬂerature gradients of the thermal shock indicates the scaling
are summarized below. . _and uniformity of these patterns. They are indistinguishable
_ (i) We observe a large number of cells with five and sixanart from a specific scale of length. We conclude that crack
sides. The discrete probability density functidf(n) is  patierns considered in this paper are an example of two-
asymmetric and it has the maximum forbetween 5 and 6. gimensjonal random space-filling cellular structures and fol-
The average number of cell sid@s), is quite close to 6 and o\ the general topological and geometric features for these
the variance oP(n), often used to quantify disorder of ran- gystems. Further investigations are under way to identify the

dom cellular structures, ig,=2.75. _ effect of material properties on crack patterns produced by
(i) The Aboav-Weaire law holds with the value of the the thermal shock. We are planning to study crack patterns
parametem=1, i.e., with a slope equal to 5. produced by the thermal shock in different ceramics and

~ (iiit) The number of sides of adjoining cells are correlatedother materials. It will enhance our current understanding of
in the same way as in many other natural and artificial ranthe crack propagation in materials under thermal stresses.
dom space-filling structures with comparable valueg.gf

The two-cell topological correlations show reasonable agree-

ment with the relation derived in Reff14] with parameters ACKNOWLEDGMENTS
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