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Topological and geometrical properties of crack patterns produced by the thermal shock
in ceramics

W. Korneta,* S. K. Mendiratta,† and J. Menteiro
Departamento de Fisica, Universidade de Aveiro, 3800 Aveiro, Portugal

~Received 13 June 1997!

We study the crack patterns produced by thermal shock in ceramic tableware. Cracks produced at suffi-
ciently high-temperature gradients partition the surface plane of a ceramic material into cells forming a random
two-dimensional space-filling cellular structure. The topological and geometrical properties of these structures
are described and analyzed. The distribution of the number of cell sides, the topological correlations between
adjoining cells, the probability distributions of a cell area and side length, the average area and perimeter of
n-sided cells, and the distribution of vertex angles are determined. The results show that the studied cellular
structures obey the Aboav-Weaire law@Metallography3, 383 ~1970!; 7, 157 ~1974!# and Desch’s law@J. Inst.
Metals22, 241 ~1919!#. The scaling behavior of cellular structures obtained at different temperature gradients
of the thermal shock is also presented.@S1063-651X~98!00803-4#

PACS number~s!: 62.20.Mk, 05.90.1m, 44.90.1c, 46.30.Nz
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I. INTRODUCTION

The susceptibility of ceramic materials to failure due
thermal stresses is one of the factors limiting their appli
tions. The thermal stresses result from temperature grad
within a body and the fact that free expansion or contract
of each volume element of a body cannot occur. The ef
of thermal stresses on ceramic materials depends on
stress level, the stress distribution, and the material cha
teristics such as homogeneity, porosity, and existing cra
When ceramic materials are subject to a rapid change
temperature~thermal shock!, substantial thermal stresses d
velop which may cause the formation of cracks and even
fracture of a material. The critical temperature differen
DTc for the initiation of severe damage is used as the
scriptive parameter for the thermal shock resistivity of c
ramics;DTc is usually determined by the significant drop
material strength and it is also indicated by the appearanc
cracks. In the thermal shock the main source of stress in
sification comes from the temperature gradient along the
flow axis. Moreover, thermal stresses are largest at the
face. The most probable cracks that form, therefore, du
the thermal shock are thus surface cracks normal to the
face. These cracks do not form a barrier for the heat flow
the direction perpendicular to the surface they can be w
characterized by their penetration depths. More interestin
the crack pattern on the surface. This pattern consists
loops that partition the surface plane into cells and also
dangling branches in larger cells. The random space-fil
cellular patterns associated with stress-relief cracking
common in nature, e.g., cooling-induced patterns in la
flows and shrinkage crack patterns in mud~see Ref.@1# and
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references therein!. In fact, random cellular structures can b
observed in many natural phenomena and it was emphas
by various authors that these structures abound in nature~see
the review papers of Weaire and Rivier@1# and Stavans@2#
for many examples!. In recent years the topological and ge
metrical properties of such structures have been studied
tensively, both experimentally and theoretically, and t
methods to classify them have been proposed. The se
empirical laws generally obeyed in different random cellu
structures have been formulated. Attempts have been m
to derive these widely observed empirical laws by metho
of statistical mechanics@3#. Recent results obtained withi
mean-field theories, Potts model simulations, and Mo
Carlo studies@1,2# have also contributed to the basic unde
standing of cellular structures.

The aim of this paper is to present topological and g
metrical properties of random cellular structures formed
cracks produced by the thermal shock in commercial cera
materials used to make common dinner plates; the ungla
plates were supplied by Sociedade Porcelana Alcobac¸a Lda.
~SPAL!, Portugal. Our interest in this subject comes from t
fact that understanding and control of crack propagation d
ing the thermal shock in ceramic products is technologica
important. We describe regularities that we found in the
ganization of cracks induced by the thermal shock and
compare patterns formed by these cracks with patterns
served in other random cellular structures of many natu
phenomena. We also consider the effect of the tempera
gradient on topological and geometrical properties of crea
crack patterns.

II. EXPERIMENTAL PROCEDURE

The disk-shaped samples having a diameter of 15 mm
thickness of 4.5 mm were core drilled from the central p
of unglazed plates. One of the most widely used therm
shock tests of ceramic materials is the classical water que
test. We performed the water quench test using a spec
designed apparatus@4# that guaranteed a repeatable and m
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57 3143TOPOLOGICAL AND GEOMETRICAL PROPERTIES OF . . .
surable thermal gradient. In our experiments the test sam
was allowed to equilibrate in a vertical electrical furnace
20 min and dropped in a time shorter than 1 s into a water
bath having the temperature 20 °C. During the water que
the increase of the bath temperature never exceeded 1 °
a dry run it was confirmed that the temperature of
sample, as measured at the surface, at the moment of h
the cold water was not lower than few degrees from tha
the furnace. Since the whole procedure is automatic,
small drop is always repeatable. Subsequently, the sam
were taken out of the bath, dried, and covered with 1% wa
solution of methylene blue powder supplied by MERC
The painted samples were left for drying and the excess
was removed by water. This procedure rendered cracks
ible. The critical temperature differenceDTc was determined
as the quenching temperature difference in which a p
nounced drop in the retained bending strength~measured in a
standard three-point-bending test! was observed@4#. We ob-
tainedDTc'200 °C, corresponding to the initial temperatu
220 °C in the water quench test. We noticed that for
temperature gradientDT,DTc , the crack pattern did no
appear. Using the image scanner, we digitized images of
ible crack patterns at 7033703 pixel resolution and eight bit
of gray scale. The standard image processing operat
were used to enhance the contrast of crack patterns. A bi
image was then derived from the gray scale image usin
thresholding routine. Finally, the thinning binary morph
logical operation that thins objects to lines and preserves
Euler number was applied to the binary image. The skele
thus obtained contains both the topological and the me
information of the crack structure and is suitable for me
surement operations. In order to verify the corresponde
between a crack pattern and its skeleton we always supe
posed the skeleton on the original gray scale image. Th
examples of the obtained crack patterns with their super
posed skeletons are shown in Figs. 1 and 2. One can see
the crack pattern changes when the temperature gradie
the water quench test increases. The skeleton of the c
pattern after removal of all dangling branches forms a r
dom two-dimensional cellular structure in which cells a
separated by very thin boundaries and they completely
the space. An example of such a structure is shown in Fig
Though the structure of dangling bonds and the depth di
bution of cracks also carry useful information about t
physics behind the phenomenon, we limit ourselves in
paper to the study of closed loop surface cracks.

In the crack patterns produced at temperature gradi
larger than but close toDTc one could distinguish only a few
cells; therefore, our analysis was performed only for cra
patterns produced at higher temperature gradients where
proportion of inner cells to all cells was higher than 0.5. W
choose the following initial temperatures of the water quen
test: 300 °C, 350 °C, 400 °C, 600 °C, and 700 °C. All t
quenches were done approximately for the same time,
under 1 s. The proportion of the number of inner cells to
number of cells at the boundary of a sample varied appr
mately from 1.4 ~300 °C! to 5 ~700 °C!. The number of
samples taken into account was the following: 11~300 °C!, 7
~350 °C and 400 °C!, and 2~600 °C and 700 °C!. The results
presented below were obtained by averaging the data
the samples.
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III. TOPOLOGICAL PROPERTIES

In this section we discuss the general topological featu
of the crack loops. Special attention is paid to the topologi
correlation between neighboring cells.

A. Distribution of topological parameters

In two-dimensional cellular structures the topology of
cell can be described by only one parameter, i.e., the num
n of sides of a cell. The numbern in random cellular struc-
ture is a topological random variable and can be charac
ized by the discrete probability distribution functionP(n)
and its moments. Both theP(n) and its moments are th
most frequently measured experimental data and they
tracted the greatest attention in the theoretical studies of
dom cellular structures. In Fig. 3 we present distributio
P(n) determined in our cellular structures. The typical err
bars are also shown in this figure. One can notice that wit
experimental accuracy it is difficult to distinguish probabili
distributionsP(n) obtained in cellular structures correspon
ing to different temperature gradients of the thermal sho
One characteristic feature of our cellular structures that
lows from Fig. 3 is that the probability of finding cells wit
five or six sides is very large, the value for six being high
A significant occurrence of pentagons along with the m
expected hexagons was also observed in crack patt
formed in cooling basalt flows and other contracting syste
~see Ref.@5# and references therein!. The probability distri-
butions shown in Fig. 3 have maxima forn between 5 and 6,
they are asymmetric, and the relationP(5).P(7) is satis-
fied. These properties ofP(n) have been observed also
other random cellular structures. The probability distributi
can be characterized by its moments. In the experimental
theoretical studies of random cellular structures usually o
the first moment̂ n&, which determines the position of th
center of gravity of the distribution, and the second mom
m2, which determines the dispersion ofn values around the
mean, are considered. Higher moments ofP(n) are sensitive
to the large values ofn, which is hard to measure becau
there are only a few large cells. They are useful only
qualitative indicators, e.g., the third moment measures
asymmetry of the distribution. Analyzing random cellul
structures representing crack patterns, we observed tha
vertices are predominantly trivalent. There were only a f
tetravalent vertices~about 1%!. This small percentage ma
be due to the resolution of images of crack patterns. T
number of cells, edges, and vertices of any cellular struc
obeys the conservation law, i.e., Euler’s relation@1#. The
consequence of Euler’s relation for the infinite tw
dimensional cellular structures with only trivalent vertices
that the average number of sides of a cell in such a struc
is 6, i.e., ^n&56. In finite cellular structureŝn& and the
deviation from 6 increases when the number of cells
creases. This effect was observed, e.g., in two-dimensio
soap froth@6# and Voronoi diagrams@7#. We obtained the
following values for^n& averaged over crack patterns pr
duced at the same initial temperature of the water que
test: 5.93 ~for 700 °C, 600 °C, and 400 °C!, 5.86 ~for
350 °C!, and 5.79~for 300 °C!. The variancem2 of P(n)
shows a great diversity of values in different natural rand
cellular structures. It is of the order of unity for biologica
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FIG. 1. Crack pattern produced by the thermal shock in ceramic material and its skeleton. The initial temperature in the water qu
was 400 °C.~a! The original gray scale image,~b! the skeleton,~c! the skeleton superimposed on the original, and~d! the skeleton after
removal of dangling branches.
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cells @8# and lies between 1 and 3 for soaps froths@6,9#. The
second moments of probability distributions shown in Fig
are the following: 2.67 ~700 °C!, 2.70 ~600 °C!, 2.82
~400 °C!, 2.81 ~350 °C!, and 2.74~300 °C!, i.e., they are in
the rangem252.7560.07.

B. The Aboav-Weaire law

The semiempirical Aboav-Weaire law@2,10,11# is the
most frequently obeyed empirical regularity observed in r
dom cellular patterns. It describes topological correlation
tween neighboring cells. Letm(n) be the average number o
sides of cells surrounding ann-sided cell. Aboav@10# ob-
-
-

served empirically that in cellular structures with trivale
verticesm(n) is linearly related to 1/n. The Aboav-Weaire
law is usually expressed by the equation

nm~n!5~62a!n1~6a1m2!, ~1!

wherea is a parameter andm2 is the variance ofP(n). In
many natural random cellular structures the parametera is of
the order of 1@6,8# and does not exceed 2@12#. In finite
cellular structures one should replace 6 in Eq.~1! by ^n&
@12#. Peshkinet al. @13# showed that the linearity implied by
the Aboav-Weaire relation can be explained by t
maximum-entropy principle with constraints imposed
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57 3145TOPOLOGICAL AND GEOMETRICAL PROPERTIES OF . . .
possible distributionsP(n) andMn(k), whereMn(k) is the
average number ofk-sided cells adjoining ann-sided cell. In
Fig. 4 we show experimentally measured dependence
nm(n) on n obtained for cellular structures corresponding
crack patterns produced by the thermal shock at differ
temperature gradients. The data for this figure were obta
by calculatingm(n) only for the innern-sided cells. We also
plotted, for comparison, the straight line given by Eq.~1!
with a51 andm252.75. The experimental data follow, i
general, the Aboav-Weaire law very well. There is a slig

FIG. 2. Gray scale images of crack patterns produced by
thermal shock in ceramic material with superimposed skeleton
cracks. The initial temperature in the water quench test was~a!
300 °C and~b! 700 °C.
of

nt
ed

t

departure for cells with more than nine sides, which may
due to the fact that the number of data points for many-si
cells is low.

C. Two-cell topological correlations

In this section we describe topological correlations b
tween shapes of nearest-neighbor cells more precisely th
is expressed by the Aboav-Weaire law. The probabi
Pn(k) of finding k-sided cell in the neighborhood of a
n-sided cell equalsMn(k)/(kMn(k), whereMn(k) has been
defined above. The topological correlation functionsC(n,k)
studied in this section are defined asC(n,k)5Pn(k)/P(k).
They express the proportion of the probability of findin
k-sided cells in the neighborhood ofn-sided cells to the
probability of findingk-sided cells anywhere in random ce
lular structure. The correlation functionsC(n,k) defined
above differ from the correlation functions studied, e.g.,
Refs. @7,12,14# by the factor 1/n, because the sum of quan
tities Mn(k) over k is n @13#. The correlation functions
C(n,k) have been less investigated in cellular structures t
the probability distributionP(n) or the Aboav-Weaire rela-
tion. These functions have drawn the attention in rec
years because they allow a comparison of topological pr
erties of cellular structures with different distributionsP(n).
Comparing the topological correlations in different rando
cellular structures, one observes their restricted variability
structures that have similar values of the variancem2. More-
over, these correlations undergo a regular and smooth ch
whenm2 increases. The correlationsC(n,k) in random cel-
lular structures are found not to depend on the scale
physical phenomena in which they occur. The observed
pendence of correlationsC(n,k) on k is usually tested with
the linear dependence@14#

C~n,k!511
12~a/m2!~n26!

n
~k26!, ~2!

wherea is the parameter of the Aboav-Weaire law andm2 is
the variance ofP(n). One should notice that the correlation
C(n,k) are in fact determined by a single structural para
etera/m2. Figure 5 shows the dependence of the correlati
C(n,k) on k, which we obtained for random cellular struc
tures formed by cracks produced by the thermal shock
different temperature gradients. These data were obtaine
taking into account only the innern-sided cells. The conclu-
sion that follows from our data is that the number of sides
adjoining cells are correlated: many sided cells have fe
sided neighbors and vice versa. The probability of select
six-sided cells in the neighborhood of a cell with any numb
of sides is the same, i.e., six-sided cells are homogeneo
distributed among other cells in our cellular structures. T
also agrees qualitatively with the peak ofP(n) in Fig. 3,
which is close to 6. If the numbern of cell sides increases
from 4 to 8, the probability of selecting a cell with any num
ber of sides in its neighborhood tends to the probability
selecting this cell randomly in the structure. In Fig. 5 w
have also plotted the straight lines according to Eq.~2! with
a51 andm252.75. One can notice a reasonable agreem
between our experimental data and relation~2!. The devia-

e
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FIG. 3. DistributionP(n) of the numbern of sides of cells in random cellular structures formed by cracks produced by the thermal
in ceramic material. The initial temperatures in the water quench test are indicated. The error bars denote a standard deviation an
given for the initial temperature 400 °C.
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tions from this relation for the smallest and the largesk
values can be due to the too small number of cells with
extreme number of sides. The deviations are also larger
correlations in cellular structures corresponding to
smaller temperature gradients of the thermal shock bec
the number of cells becomes lower. The topological corre
tions C(n,k) must fulfill the conditionC(n,k)>0 for all k
andn. Formula~2! gives unphysicallyC(4,k),0 for k<4,
so it cannot be used to describe topological correlations
tween the smallest cells. In our structures we obtain
C(3,3)50; the same has been observed in cellular structu
@12,14#. Indeed, this relation follows from the general top
logical constraint that a cell does not share two edges w
any one of its neighbors.
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IV. METRIC PROPERTIES

There are several metric parameters of a cell whose p
ability distributions can be used to characterize cellular str
tures, e.g., the area, perimeter, side length, radius of gyra
equivalent diameter of a cell, or segments into which strai
lines whose directions are random are broken by their in
sections with cell sides. Among these parameters the p
ability distributions of cell areas and side lengths are
most often reported@1,2,9,15–19# in cellular systems. In
general, one expects that all lengths should behave in a s
lar way and the area should go as their square@15#. The
probability density functions of cell areasA normalized by
the median cell areaAmed in cellular structures formed by
cracks produced by the thermal shock at different tempe
st-
e

FIG. 4. Aboav-Weaire law: the average correlationnm(n) as a function ofn. m(n) is the average number of sides of the neare
neighbor cells adjacent ton-sided cells. The straight line is calculated from Eq.~1! with a51 andm252.75. The initial temperatures in th
water quench test are indicated.
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FIG. 5. Topological two-cell correlationsC(n,k) defined as the proportion of the probability of findingk-sided cells in the neighborhoo
of n-sided cells to the probability of findingk-sided cells anywhere in the cellular structure. The straight lines are calculated from fo
~2! with a51 andm252.75. The initial temperatures in the water quench test are indicated.
th
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er
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cale
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lar
ro-
ture gradients are shown in Fig. 6. In Fig. 7 we present
probability density functions of side lengthsL ~along
cracks!, normalized by the median side lengthLmed obtained
in the same cellular structures as in Fig. 6. One can no
that the probability density functions corresponding to diff
e

e
-

ent temperature gradients of the thermal shock within exp
mental error are the same. We conclude that there exist s
invariant probability density functions that describe distrib
tions of areas and side lengths in all our random cellu
structures. Other similarities between cellular structures p
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FIG. 6. Probability density function of normalized cell areas in random cellular structures formed by cracks produced by the
shock in ceramic material. The curve results from a fit of the probability density function given by Eq.~3! to experimental data. The initia
temperatures in the water quench test are indicated.
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duced by the thermal shock at different temperature gr
ents arise from relations between average quantities. We
tained for all temperature gradients the following ratios
average quantities:̂P&/^L&55.8060.10 (P denotes the pe
rimeter of a cell!, ^A&/^L&251.9160.14, and
^A&/^LE&252.4860.05 (LE is the Euclidean side length of
cell!. In a regular hexagonal structurêP&/^L&56 and
^A&/^LE&2'2.56. The experimental values obtained here
dicate strong correlations between the area, perimeter,
side lengths in our cellular structures. There are no ex
results for the form of probability density functions for th
area and side length in random cellular structures and sev
functions have been proposed. In Ref.@15# one can find four
different probability density functions proposed to fit the e
perimental data. The most often used function wasg distri-
bution because it gives a good fit to the distribution of ar
i-
b-
f

-
nd
ct

ral

-

s

in Voronoi networks@18,19# and the lognormal distribution
because it results from multiplicative random events. W
have tried to fit different probability density functions to o
experimental data. The goodness of fit was characterized
x 2 test. The smallest test statisticsx2 was obtained for the
probability density function

f ~x!5
axa21

sA2p
expS 2

~xa2m!2

2s2 D , ~3!

wherea, m, ands are parameters. This function has be
used often to describe the distribution of grain sizes in po
crystals~see Ref.@20# and references therein!. It was dem-
onstrated@20# that the distribution of grain sizes in polycrys
talline ceramics is the most accurately represented by
by the
FIG. 7. Probability density function of normalized cell side lengths in random cellular structures formed by cracks produced
thermal shock in ceramic material. The curve results from a fit of the probability density function given by Eq.~3! to experimental data. The
initial temperatures in the water quench test are indicated.
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FIG. 8. Radius law: the normalized average radius ofn-sided cells as a function of the normalized number of cell sides. The in
temperatures in the water quench test are indicated.
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function~3! and it does not depend on the average grain s
We obtained the following parameters:aA50.25, mA51,
and sA50.17 for the distribution ofA/Amed and aL50.5,
mL51, and sL50.25 for the distribution ofL/Lmed. The
results of the fit are shown in Figs. 6 and 7. The relat
between parametersaL52aA indicates that the area behav
approximately as a square of the side length, as expec
There is thus a correlation between the distribution laws
areas and side lengths in our cellular structures. The sim
correlation was also observed in Voronoi mosaics where
shiftedg law was used to fit the area and side length dis
butions@15#.

V. THE RADIUS LAW

In this section we consider relations between topolog
and metric parameters in our random cellular structures.
correlation between the shape and size of cells in rand
cellular structures attracted the attention of scientists a l
time ago@21,22#. The two relations were discovered empi
cally: Lewis’s law and Desch’s law, also known as the rad
law. Lewis’s law relates the average area ofn-sided cells
linearly ton, whereas Desch’s law relates the average rad
~defined as the square root of an area! of n-sided cells lin-
early ton. These two laws are obeyed by a wide variety
random space-filling model structures and experimental
tems ~see the paper of Glazieret al. @9# and references
therein!. The Lewis’s and Desch’s laws can thus be used
classify random two-dimensional cellular structures. Riv
@3# used the maximum-entropy principle to prove these la
theoretically. Rivier’s maximum-entropy method was bas
on the observation that random cellular structures are usu
indistinguishable apart from the scale of measurement.
thus improbable that specific forces are responsible for
universal properties of random cellular structures.
‘‘ideal’’ random space-filling structure can thus be dete
mined by mathematical constraints only and the fact that
structure is the most probable one. This structure ob
Lewis’s law. In many systems all the energy is carried
e.
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boundaries between cells so the average energy, proport
to the perimeter of a cell, is the different physical constra
in these systems. Entropy maximization under the inesc
able mathematical constraints and this physical constr
yields the radius law.

Let r n denote the normalized average radius ofn-sided
cells defined asr n5^AAn&/^AA&, whereAn is the area of
n-sided cells@9#. In Fig. 8 we showr n as a function ofn in
our random cellular structures formed by cracks produced
the thermal shock at different temperature gradients. In
figure only the inner cells in a structure were taken into
count. One can notice that the dependence ofr n on n is
linear for all temperature gradients, indicating that our ra
dom cellular structures obey Desch’s universal law. The r
dom cellular structures formed by cracks thus belong to
class of random space-filling structures in which the ene
associated with cell boundaries~cracks! is probably the im-
portant mechanism in the development of the structure.

In the natural cellular structures fewer experimental
sults have been presented for correlations between other
ric parameters such as the average perimeter or side leng
n-sided cells and the topological parametern. These corre-
lations were experimentally studied in vegetable tissues@8#
and the linear relationship between the average perimete
n-sided cells andn was obtained. In our investigations th
perimeters of the cells are very important because they
resent cracks. Figure 9 shows the average perimete
n-sided cells as a function ofn for all our cellular structures.
The data corresponding to different temperature gradient
the thermal shock overlap after normalization shown in
figure. The dependence of the average perimeter ofn-sided
cells onn is linear forn,9. The deviation from this linear
dependence for large cells indicates that these cells are m
elongated than smaller cells. This may be due to the prese
of dangling branches in large cells that failed to connect c
sides.

VI. DISTRIBUTION OF VERTEX ANGLES

The variation of the angle between cell sides at verti
has been little studied in random cellular structures. This
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FIG. 9. Normalized average perimeter ofn-sided cells as a function of the normalized number of cell sides. The initial temperatu
the water quench test are indicated.
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due to the observation that in many natural trivalent cellu
space-filling structures the angle between cell sides at v
ces is tightly distributed around 120°@1#. This property also
follows from equilibrium conditions at vertices@2#. Stavans
and Glazier@6# measured internal angles of cells at vertic
as a function of the number of sides in a two-dimensio
soap froth. They observed significant deviations from
angle 120° that were independent of the length scale.
experimental relation between the average internal angl
n-sided cellsu(n) andn can be well expressed by the fun
tion @23#

u~n!5120°F110.5f S 12
6

nD G , ~4!

where f is a single fitting parameter between 0 and 1~e.g.,
f 50.3 for the relation measured in Ref.@6#!. For f 50 one
r
ti-

s
l

e
e

of

obtainsu(n)5120°, which corresponds to the lack of devi
tion from 120° for the average internal angle ofn-sided cells.
For f 51 the formula gives the average internal angle
regular polygons~this behavior is shown as a dotted line
Fig. 11!.

In our cellular structures cell edges corresponding
cracks are slightly irregular~see Figs. 1 and 2!. In order to
measure the angle between cell edges at a given vertex
replaced each edge near the vertex by a straight segm
determined by the least-squares fit to pixels forming the e
and closest to that vertex. The fraction of pointsf r of each
edge taken into account in the least-squares fit was an ad
able parameter in this procedure. The results obtained
f r50.25 in our samples are shown in Fig. 10. The dep
dence ofu(n) on n in this figure is well expressed by th
function~4! with f 50.15. We observed that by decreasingf r
the deviations ofu(n) from 120° decrease, as it is shown
ex
cedure.
the initial
FIG. 10. Average internal angleu(n) of n-sided cells as a function of their number of sidesn. The angle between cell edges at a vert
was determined by replacing a fractionf r50.25 of each cell edge near the vertex by a straight segment fitted by the least-squares pro
The initial temperatures in the water quench test are indicated. The error bars denote a standard deviation and are given for
temperature 400 °C. The curves were calculated from Eq.~4!.



y
e between

the
nd
r

57 3151TOPOLOGICAL AND GEOMETRICAL PROPERTIES OF . . .
FIG. 11. Average internal angleu(n) of n-sided cells as a function of their number of sidesn in random cellular structures formed b
cracks produced by the thermal shock in ceramic material. The initial temperature in the water quench test was 400 °C. The angl
cell edges at a vertex was determined by replacing a fractionf r of each cell edge near the vertex by a straight segment fitted by
least-squares procedure. The thin curves connect the results obtained for each value off r and are placed to guide the eye. The thick a
dashed curves are calculated from Eq.~4!. The thick curves fit measured relations. The parameterf for each of these curves is given afte
the corresponding parameterf r .
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Fig. 11. This property of our crack patterns does not dep
on the temperature gradient of the thermal shock. The m
sured relation betweenu(n) andn for any value of the pa-
rameterf r can be fitted well by the function~4!. We could
not decreasef r below 0.15 because of the resolution of o
images.

VII. CONCLUSIONS

In this paper we have presented experimental data an
analysis of crack patterns produced by the thermal shoc
temperature gradientsDT.DTc , where DTc'220 °C, in
ceramics used commercially in making tableware. T
cracks visible on the surface of a sample partition the surf
plane into cells forming a random two-dimensional spa
filling cellular structure. We have described topological a
geometrical properties of this structure. The results obtai
are summarized below.

~i! We observe a large number of cells with five and
sides. The discrete probability density functionP(n) is
asymmetric and it has the maximum forn between 5 and 6
The average number of cell sides^n&, is quite close to 6 and
the variance ofP(n), often used to quantify disorder of ran
dom cellular structures, ism252.75.

~ii ! The Aboav-Weaire law holds with the value of th
parametera51, i.e., with a slope equal to 5.

~iii ! The number of sides of adjoining cells are correla
in the same way as in many other natural and artificial r
dom space-filling structures with comparable values ofm2.
The two-cell topological correlations show reasonable ag
ment with the relation derived in Ref.@14# with parameters
a51 andm252.75.

~iv! The probability distributions of normalized areas a
side lengths are well represented by the probability den
function ~3!. The values of fitted parameters suggest t
there is a correlation between the distribution laws of ar
and side lengths. The relations between average value
d
a-

an
at

e
e
-

d
d

d
-

e-

ty
t
s
of

areas, perimeters, and side lengths also indicate correla
between these quantities.

~v! The radius law~Desch’s law! holds, suggesting tha
the cell energy may be important in the physical model
crack development. The average perimeter ofn-sided cells
increases linearly withn for n,8.

~vi! We measured angles between cell sides at a ve
approximating cell sides close to the vertex by straight s
ments obtained by the least-squares fit. The obtained de
dence of the average internal angle ofn-sided cell onn
shows slight deviations from 120°; however, the deviati
decreases when cell sides are replaced by straight segm
closer and closer to a vertex. This suggests that in the l
the average internal angle ofn-sided cells is 120° for all
values ofn.

Our analysis of crack patterns produced at different te
perature gradients of the thermal shock indicates the sca
and uniformity of these patterns. They are indistinguisha
apart from a specific scale of length. We conclude that cr
patterns considered in this paper are an example of t
dimensional random space-filling cellular structures and
low the general topological and geometric features for th
systems. Further investigations are under way to identify
effect of material properties on crack patterns produced
the thermal shock. We are planning to study crack patte
produced by the thermal shock in different ceramics a
other materials. It will enhance our current understanding
the crack propagation in materials under thermal stresse
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